Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Radiol Artif Intell ; 2(4): e200048, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-2098029

ABSTRACT

PURPOSE: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. MATERIALS AND METHODS: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning. The first measure of (PO, PHO) is global, while the second of (LSS, LHOS) is lobe-wise. Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States collected between 2002-Present (April 2020). Ground truth is established by manual annotations of lesions, lungs, and lobes. Correlation and regression analyses were performed to compare the prediction to the ground truth. RESULTS: Pearson correlation coefficient between method prediction and ground truth for COVID-19 cases was calculated as 0.92 for PO (P < .001), 0.97 for PHO (P < .001), 0.91 for LSS (P < .001), 0.90 for LHOS (P < .001). 98 of 100 healthy controls had a predicted PO of less than 1%, 2 had between 1-2%. Automated processing time to compute the severity scores was 10 seconds per case compared to 30 minutes required for manual annotations. CONCLUSION: A new method segments regions of CT abnormalities associated with COVID-19 and computes (PO, PHO), as well as (LSS, LHOS) severity scores.

2.
Biomedicines ; 10(6)2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1883993

ABSTRACT

BACKGROUND: Vascular abnormalities, including venous congestion (VC) and pulmonary embolism (PE), have been recognized as frequent COVID-19 imaging patterns and proposed as severity markers. However, the underlying pathophysiological mechanisms remain unclear. In this study, we aimed to characterize the relationship between VC, PE distribution, and alveolar opacities (AO). METHODS: This multicenter observational registry (clinicaltrials.gov identifier NCT04824313) included 268 patients diagnosed with SARS-CoV-2 infection and subjected to contrast-enhanced CT between March and June 2020. Acute PE was diagnosed in 61 (22.8%) patients, including 17 females (27.9%), at a mean age of 61.7 ± 14.2 years. Demographic, laboratory, and outcome data were retrieved. We analyzed CT images at the segmental level regarding VC (qualitatively and quantitatively [diameter]), AO (semi-quantitatively as absent, <50%, or >50% involvement), clot location, and distribution related to VC and AO. Segments with vs. without PE were compared. RESULTS: Out of 411 emboli, 82 (20%) were lobar or more proximal and 329 (80%) were segmental or subsegmental. Venous diameters were significantly higher in segments with AO (p = 0.031), unlike arteries (p = 0.138). At the segmental level, 77% of emboli were associated with VC. Overall, PE occurred in 28.2% of segments with AO vs. 21.8% without (p = 0.047). In the absence of VC, however, AO did not affect PE rates (p = 0.94). CONCLUSIONS: Vascular changes predominantly affected veins, and most PEs were located in segments with VC. In the absence of VC, AOs were not associated with the PE rate. VC might result from increased flow supported by the hypothesis of pulmonary arteriovenous anastomosis dysregulation as a relevant contributing factor.

3.
Eur Radiol ; 31(11): 8775-8785, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1209506

ABSTRACT

OBJECTIVES: To investigate machine learning classifiers and interpretable models using chest CT for detection of COVID-19 and differentiation from other pneumonias, interstitial lung disease (ILD) and normal CTs. METHODS: Our retrospective multi-institutional study obtained 2446 chest CTs from 16 institutions (including 1161 COVID-19 patients). Training/validation/testing cohorts included 1011/50/100 COVID-19, 388/16/33 ILD, 189/16/33 other pneumonias, and 559/17/34 normal (no pathologies) CTs. A metric-based approach for the classification of COVID-19 used interpretable features, relying on logistic regression and random forests. A deep learning-based classifier differentiated COVID-19 via 3D features extracted directly from CT attenuation and probability distribution of airspace opacities. RESULTS: Most discriminative features of COVID-19 are the percentage of airspace opacity and peripheral and basal predominant opacities, concordant with the typical characterization of COVID-19 in the literature. Unsupervised hierarchical clustering compares feature distribution across COVID-19 and control cohorts. The metrics-based classifier achieved AUC = 0.83, sensitivity = 0.74, and specificity = 0.79 versus respectively 0.93, 0.90, and 0.83 for the DL-based classifier. Most of ambiguity comes from non-COVID-19 pneumonia with manifestations that overlap with COVID-19, as well as mild COVID-19 cases. Non-COVID-19 classification performance is 91% for ILD, 64% for other pneumonias, and 94% for no pathologies, which demonstrates the robustness of our method against different compositions of control groups. CONCLUSIONS: Our new method accurately discriminates COVID-19 from other types of pneumonia, ILD, and CTs with no pathologies, using quantitative imaging features derived from chest CT, while balancing interpretability of results and classification performance and, therefore, may be useful to facilitate diagnosis of COVID-19. KEY POINTS: • Unsupervised clustering reveals the key tomographic features including percent airspace opacity and peripheral and basal opacities most typical of COVID-19 relative to control groups. • COVID-19-positive CTs were compared with COVID-19-negative chest CTs (including a balanced distribution of non-COVID-19 pneumonia, ILD, and no pathologies). Classification accuracies for COVID-19, pneumonia, ILD, and CT scans with no pathologies are respectively 90%, 64%, 91%, and 94%. • Our deep learning (DL)-based classification method demonstrates an AUC of 0.93 (sensitivity 90%, specificity 83%). Machine learning methods applied to quantitative chest CT metrics can therefore improve diagnostic accuracy in suspected COVID-19, particularly in resource-constrained environments.


Subject(s)
COVID-19 , Humans , Machine Learning , Retrospective Studies , SARS-CoV-2 , Thorax
4.
Diagnostics (Basel) ; 11(4)2021 Mar 29.
Article in English | MEDLINE | ID: covidwho-1160511

ABSTRACT

Although vascular abnormalities are thought to affect coronavirus disease 2019 (COVID-19) patients' outcomes, they have not been thoroughly characterized in large series of unselected patients. The Swiss national registry coronavirus-associated vascular abnormalities (CAVA) is a multicentric cohort of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who underwent a clinically indicated chest computed tomography (CT) aiming to assess the prevalence, severity, distribution, and prognostic value of vascular and non-vascular-related CT findings. Clinical outcomes, stratified as outpatient treatment, inpatient without mechanical ventilation, inpatient with mechanical ventilation, or death, will be correlated with CT and biological markers. The main objective is to assess the prevalence of cardiovascular abnormalities-including pulmonary embolism (PE), cardiac morphology, and vascular congestion. Secondary objectives include the predictive value of cardiovascular abnormalities in terms of disease severity and fatal outcome and the association of lung inflammation with vascular abnormalities at the segmental level. New quantitative approaches derived from CT imaging are developed and evaluated in this study. Patients with and without vascular abnormalities will be compared, which is supposed to provide insights into the prognostic role and potential impact of such signs on treatment strategy. Results are expected to enable the development of an integrative score combining both clinical data and imaging findings to predict outcomes.

5.
Radiol Cardiothorac Imaging ; 2(6): e200406, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1156006

ABSTRACT

PURPOSE: The purpose of this retrospective study was to correlate CT patterns of fatal cases of coronavirus disease 2019 (COVID-19) with postmortem pathology observations. MATERIALS AND METHODS: The study included 70 lung lobes of 14 patients who died of reverse-transcription polymerase chain reaction-confirmed COVID-19. All patients underwent antemortem CT and autopsy between March 9 and April 30, 2020. Board-certified radiologists and pathologists performed lobewise correlations of pulmonary observations. In a consensus reading, 267 radiologic and 257 histopathologic observations of the lungs were recorded and systematically graded according to severity. These observations were matched and evaluated. RESULTS: Predominant CT observations were ground-glass opacities (GGO) (59/70 lobes examined) and areas of consolidation (33/70). The histopathologic observations were consistent with diffuse alveolar damage (70/70) and capillary dilatation and congestion (70/70), often accompanied by microthrombi (27/70), superimposed acute bronchopneumonia (17/70), and leukocytoclastic vasculitis (7/70). Four patients had pulmonary emboli. Bronchial wall thickening at CT histologically corresponded with acute bronchopneumonia. GGOs and consolidations corresponded with mixed histopathologic observations, including capillary dilatation and congestion, interstitial edema, diffuse alveolar damage, and microthrombosis. Vascular alterations were prominent observations at both CT and histopathology. CONCLUSION: A significant proportion of GGO correlated with the pathologic processes of diffuse alveolar damage, capillary dilatation and congestion, and microthrombosis. Our results confirm the presence and underline the importance of vascular alterations as key pathophysiologic drivers in lethal COVID-19.Supplemental material is available for this article.© RSNA, 2020.

6.
Korean J Radiol ; 22(6): 994-1004, 2021 06.
Article in English | MEDLINE | ID: covidwho-1123770

ABSTRACT

OBJECTIVE: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. MATERIALS AND METHODS: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. RESULTS: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88). CONCLUSION: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.


Subject(s)
COVID-19/diagnosis , Deep Learning , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Automation , COVID-19/diagnostic imaging , COVID-19/virology , Female , Humans , Logistic Models , Lung/physiopathology , Male , Middle Aged , ROC Curve , Retrospective Studies , SARS-CoV-2/isolation & purification , Young Adult
7.
ArXiv ; 2020 Apr 02.
Article in English | MEDLINE | ID: covidwho-823485

ABSTRACT

PURPOSE: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. MATERIALS AND METHODS: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning. The first measure of (PO, PHO) is global, while the second of (LSS, LHOS) is lobewise. Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States collected between 2002-Present (April, 2020). Ground truth is established by manual annotations of lesions, lungs, and lobes. Correlation and regression analyses were performed to compare the prediction to the ground truth. RESULTS: Pearson correlation coefficient between method prediction and ground truth for COVID-19 cases was calculated as 0.92 for PO (P < .001), 0.97 for PHO(P < .001), 0.91 for LSS (P < .001), 0.90 for LHOS (P < .001). 98 of 100 healthy controls had a predicted PO of less than 1%, 2 had between 1-2%. Automated processing time to compute the severity scores was 10 seconds per case compared to 30 minutes required for manual annotations. CONCLUSION: A new method segments regions of CT abnormalities associated with COVID-19 and computes (PO, PHO), as well as (LSS, LHOS) severity scores.

8.
Eur J Radiol ; 131: 109233, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-733866

ABSTRACT

PURPOSE: During the emerging COVID-19 pandemic, radiology departments faced a substantial increase in chest CT admissions coupled with the novel demand for quantification of pulmonary opacities. This article describes how our clinic implemented an automated software solution for this purpose into an established software platform in 10 days. The underlying hypothesis was that modern academic centers in radiology are capable of developing and implementing such tools by their own efforts and fast enough to meet the rapidly increasing clinical needs in the wake of a pandemic. METHOD: Deep convolutional neural network algorithms for lung segmentation and opacity quantification on chest CTs were trained using semi-automatically and manually created ground-truth (Ntotal = 172). The performance of the in-house method was compared to an externally developed algorithm on a separate test subset (N = 66). RESULTS: The final algorithm was available at day 10 and achieved human-like performance (Dice coefficient = 0.97). For opacity quantification, a slight underestimation was seen both for the in-house (1.8 %) and for the external algorithm (0.9 %). In contrast to the external reference, the underestimation for the in-house algorithm showed no dependency on total opacity load, making it more suitable for follow-up. CONCLUSIONS: The combination of machine learning and a clinically embedded software development platform enabled time-efficient development, instant deployment, and rapid adoption in clinical routine. The algorithm for fully automated lung segmentation and opacity quantification that we developed in the midst of the COVID-19 pandemic was ready for clinical use within just 10 days and achieved human-level performance even in complex cases.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Machine Learning , Pneumonia, Viral/diagnostic imaging , Software , COVID-19 , Humans , Neural Networks, Computer , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL